• Title of article

    A study on the scaling features for mixing and deflagration potential of stratified layer of hydrogen due to molecular diffusion

  • Author/Authors

    Nilesh Agrawal، نويسنده , , K. Velusamy، نويسنده , , Sarit K. Das، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2013
  • Pages
    6
  • From page
    28
  • To page
    33
  • Abstract
    Hydrogen deflagration in confined spaces is an important safety issue. The dispersion of a stratified layer of hydrogen due to molecular diffusion is studied. It represents an important class of problems related to long term behaviour of hydrogen release in confined spaces. Diffusion being a slow process, gives an upper bound on the time taken for the stratified layer to mix with air below. A method, based on four indices, namely, average mole fraction (of hydrogen), non-uniformity index, deflagration volume fraction and deflagration pressure ratio, developed recently by the authors, is used to provide vital temporal information on mixing of the stratified layer with air below and formation of flammable cloud in the enclosure. In the present paper, stratified layers of different thickness are considered and the temporal evolutions of the above indices are plotted against diffusion Fourier number. The results in non-dimensional form provide an upper bound of the time that would be required to form a uniform mixture and to attain a state with respect to deflagration potential for enclosures of different sizes. This estimate is an important input for planning mitigation measures before the accident and for post accident investigations.
  • Keywords
    flammability , Hydrogen safety , Molecular diffusion , Mixing , deflagration
  • Journal title
    International Communications in Heat and Mass Transfer
  • Serial Year
    2013
  • Journal title
    International Communications in Heat and Mass Transfer
  • Record number

    1221421