• Title of article

    Kinetics and mechanism of olefin methylation reactions on zeolites

  • Author/Authors

    Ian M. Hill، نويسنده , , Saleh Al Hashimi، نويسنده , , Aditya Bhan، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2012
  • Pages
    9
  • From page
    115
  • To page
    123
  • Abstract
    Ethylene and propylene methylation rates increased linearly with olefin pressure but did not depend on dimethyl ether (DME) pressures on proton-form FER, MFI, MOR, and BEA zeolites at low conversions (<0.2%) and high DME/olefin ratios (30:1) in accordance with a mechanism that involves the zeolite surface being predominantly covered by DME-derived species reacting with olefins. Higher first-order reaction rate constants for both ethylene and propylene methylation were observed over H-BEA and H-MFI compared with H-FER and H-MOR, indicating that olefin methylation reaction cycles involved in the conversion of methanol-to-gasoline over zeolitic acids are propagated to varying extents by different framework materials. Systematically lower activation barriers and higher rate constants were observed for propylene methylation in comparison with ethylene methylation over all frameworks studied, reflecting the increased stability of reaction intermediates and activated complexes with increasing olefin substitution. A binomial distribution of d0/d3/d6 in unreacted DME upon introduction of equimolar protium- and deuterium-form DME under steady-state reaction conditions of ethylene methylation over H-MFI suggests the presence and facile formation of reactive surface-bound methoxide species and the absence of C–H bond cleavage.
  • Keywords
    PALLADIUM , Titania , Aberration-corrected electron microscopy , Propane , Tungsten , Catalytic oxidation , Palladium oxide
  • Journal title
    Journal of Catalysis
  • Serial Year
    2012
  • Journal title
    Journal of Catalysis
  • Record number

    1223246