Title of article :
Hydrogenation of 1,3-butadiene on two ordered Sn/Pt(111) surface alloys
Author/Authors :
Haibo Zhao، نويسنده , , Bruce E. Koel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
9
From page :
24
To page :
32
Abstract :
Adsorption and reaction of 1,3-butadiene (C4H6) on two ordered Pt–Sn surface alloys precovered with hydrogen adatoms were studied with the use of temperature-programmed desorption (TPD) mass spectroscopy and Auger electron spectroscopy (AES). The two alloys investigated were the (image)Sn/Pt(111) and (image)R30°-Sn/Pt(111) surface alloys, with 25 and 33% Sn alloyed in the surface layer, respectively, formed by vapor deposition of Sn onto a Pt(111) single crystal. Alloyed Sn opens a new hydrogenation reaction pathway compared with Pt(111). Butadiene hydrogenation by coadsorbed hydrogen occurs with 100% selectivity to liberate butene (C4H8) in reaction rate-limited peaks in TPD, and no deeper hydrogenation product (butane) was observed. The activation energy barrier for hydrogenation of strongly bound 1,3-butadiene is estimated to be 91 and 72 kJ/mol on the (image) and (image)R30°alloys, respectively. Butadiene conversion was highest on the (image) alloy, reaching 100% at high hydrogen precoverages. Strong site-blocking effects of preadsorbed H adatoms were observed for 1,3-butadiene chemisorption on both alloys under these conditions; butadiene chemisorption was eliminated by image ML on the (image) alloy and image ML on the image alloy. These studies addressing the influence of alloyed Sn on the reaction barrier to 1,3-butadiene hydrogenation and the effect of surface Sn concentration on hydrogenation activity provide observations of several novel phenomena and may aid in the development of heterogeneous catalysts to selectively remove dienes in alkene streams.
Keywords :
Photoluminescence spectroscopy , UV–visible diffuse reflectance spectroscopy , Magnesium oxide , Isotopic oxygen exchange , FTIR
Journal title :
Journal of Catalysis
Serial Year :
2005
Journal title :
Journal of Catalysis
Record number :
1223971
Link To Document :
بازگشت