Title of article :
Text segmentation: A topic modeling perspective
Author/Authors :
Hemant Misra، نويسنده , , François Yvon، نويسنده , , Olivier Cappé، نويسنده , , Joemon Jose، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2011
Pages :
17
From page :
528
To page :
544
Abstract :
In this paper, the task of text segmentation is approached from a topic modeling perspective. We investigate the use of two unsupervised topic models, latent Dirichlet allocation (LDA) and multinomial mixture (MM), to segment a text into semantically coherent parts. The proposed topic model based approaches consistently outperform a standard baseline method on several datasets. A major benefit of the proposed LDA based approach is that along with the segment boundaries, it outputs the topic distribution associated with each segment. This information is of potential use in applications such as segment retrieval and discourse analysis. However, the proposed approaches, especially the LDA based method, have high computational requirements. Based on an analysis of the dynamic programming (DP) algorithm typically used for segmentation, we suggest a modification to DP that dramatically speeds up the process with no loss in performance. The proposed modification to the DP algorithm is not specific to the topic models only; it is applicable to all the algorithms that use DP for the task of text segmentation.
Keywords :
Text segmentation , Dynamic programming , Latent Dirichlet Allocation , Semantic Information , Topic modeling
Journal title :
Information Processing and Management
Serial Year :
2011
Journal title :
Information Processing and Management
Record number :
1229133
Link To Document :
بازگشت