Title of article
Applying semantic knowledge to the automatic processing of temporal expressions and events in natural language
Author/Authors
Hector Llorens، نويسنده , , Estela Saquete، نويسنده , , Borja Navarro-Colorado، نويسنده ,
Issue Information
دوماهنامه با شماره پیاپی سال 2013
Pages
19
From page
179
To page
197
Abstract
This paper addresses the problem of the automatic recognition and classification of temporal expressions and events in human language. Efficacy in these tasks is crucial if the broader task of temporal information processing is to be successfully performed. We analyze whether the application of semantic knowledge to these tasks improves the performance of current approaches. We therefore present and evaluate a data-driven approach as part of a system: TIPSem. Our approach uses lexical semantics and semantic roles as additional information to extend classical approaches which are principally based on morphosyntax. The results obtained for English show that semantic knowledge aids in temporal expression and event recognition, achieving an error reduction of 59% and 21%, while in classification the contribution is limited. From the analysis of the results it may be concluded that the application of semantic knowledge leads to more general models and aids in the recognition of temporal entities that are ambiguous at shallower language analysis levels. We also discovered that lexical semantics and semantic roles have complementary advantages, and that it is useful to combine them. Finally, we carried out the same analysis for Spanish. The results obtained show comparable advantages. This supports the hypothesis that applying the proposed semantic knowledge may be useful for different languages.
Keywords
temporal information processing , semantic roles , TimeML , semantic networks
Journal title
Information Processing and Management
Serial Year
2013
Journal title
Information Processing and Management
Record number
1229337
Link To Document