Title of article :
Named entity recognition with multiple segment representations
Author/Authors :
Han-Cheol Cho، نويسنده , , Naoaki Okazaki، نويسنده , , Makoto Miwa، نويسنده , , Jun’ichi Tsujii، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2013
Pages :
12
From page :
954
To page :
965
Abstract :
Named entity recognition (NER) is mostly formalized as a sequence labeling problem in which segments of named entities are represented by label sequences. Although a considerable effort has been made to investigate sophisticated features that encode textual characteristics of named entities (e.g. PEOPLE, LOCATION, etc.), little attention has been paid to segment representations (SRs) for multi-token named entities (e.g. the IOB2 notation). In this paper, we investigate the effects of different SRs on NER tasks, and propose a feature generation method using multiple SRs. The proposed method allows a model to exploit not only highly discriminative features of complex SRs but also robust features of simple SRs against the data sparseness problem. Since it incorporates different SRs as feature functions of Conditional Random Fields (CRFs), we can use the well-established procedure for training. In addition, the tagging speed of a model integrating multiple SRs can be accelerated equivalent to that of a model using only the most complex SR of the integrated model. Experimental results demonstrate that incorporating multiple SRs into a single model improves the performance and the stability of NER. We also provide the detailed analysis of the results.
Keywords :
Named entity recognition , conditional random fields , Feature engineering , Machine Learning
Journal title :
Information Processing and Management
Serial Year :
2013
Journal title :
Information Processing and Management
Record number :
1229425
Link To Document :
بازگشت