Title of article :
Ranking uncertain sky: The probabilistic top-k skyline operator
Author/Authors :
Ying Zhang، نويسنده , , Wenjie Zhang، نويسنده , , Xuemin Lin، نويسنده , , Bin Jiang، نويسنده , , Jian Pei، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
18
From page :
898
To page :
915
Abstract :
Many recent applications involve processing and analyzing uncertain data. In this paper, we combine the feature of top-k objects with that of skyline to model the problem of top-k skyline objects against uncertain data. The problem of efficiently computing top-k skyline objects on large uncertain datasets is challenging in both discrete and continuous cases. In this paper, firstly an efficient exact algorithm for computing the top-k skyline objects is developed for discrete cases. To address applications where each object may have a massive set of instances or a continuous probability density function, we also develop an efficient randomized algorithm with an image guarantee. Moreover, our algorithms can be immediately extended to efficiently compute p-skyline; that is, retrieving the uncertain objects with skyline probabilities above a given threshold. Our extensive experiments on synthetic and real data demonstrate the efficiency of both algorithms and the randomized algorithm is highly accurate. They also show that our techniques significantly outperform the existing techniques for computing p-skyline.
Keywords :
Skyline , Uncertain , Top-K
Journal title :
Information Systems
Serial Year :
2011
Journal title :
Information Systems
Record number :
1230221
Link To Document :
بازگشت