Title of article :
Histograms as statistical estimators for aggregate queries
Author/Authors :
Lixia Chen، نويسنده , , Alin Dobra، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
18
From page :
213
To page :
230
Abstract :
The traditional statistical assumption for interpreting histograms and justifying approximate query processing methods based on them is that all elements in a bucket have the same frequency—this is called uniform distribution assumption. In this paper, we analyze histograms from a statistical point of view. We show that a significantly less restrictive statistical assumption – the elements within a bucket are randomly arranged even though they might have different frequencies – leads to identical formulas for approximating aggregate queries using histograms. Under this assumption, we analyze the behavior of both unidimensional and multidimensional histograms and provide tight error guarantees for the quality of approximations. We conclude that histograms are the best estimators if the assumption holds; sampling and sketching are significantly worse. As an example of how the statistical theory of histograms can be extended, we show how XSketches – an approximation technique for XML queries that uses histograms as building blocks – can be statistically analyzed. The combination of the random shuffling assumption and the other statistical assumptions associated with XSketch estimators ensures a complete statistical model and error analysis for XSketches.
Keywords :
Statistical analysis , histograms , Random shuffling assumption
Journal title :
Information Systems
Serial Year :
2013
Journal title :
Information Systems
Record number :
1230297
Link To Document :
بازگشت