Title of article :
Optimization of a flow reversal reactor for the catalytic combustion of lean methane mixtures
Author/Authors :
R. Litto، نويسنده , , R.E. Hayes، نويسنده , , H. Sapoundjiev، نويسنده , , A. Fuxman، نويسنده , , F. Forbes، نويسنده , , B. Liu، نويسنده , , Olivier F. Bertrand، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
7
From page :
536
To page :
542
Abstract :
This paper describes a parametric study of a catalytic flow reversal reactor used for the combustion of lean methane in air mixtures. The effects of cycle time, velocity, reactor diameter, insulation thickness, thermal mass and thermal conductivity of the inert sections are studied using a computer model of the system. The effects on the transient behaviour of the reactor are shown. Emphasis is placed on the effects of geometry from a scale-up perspective. The most stable system is obtained when the thermal mass of the inert sections is highest, while thermal conductivity has only a minor effect on reactor temperature. For a given operation, the stationary state depends on the combination of velocity and switch time. Provided that complete conversion is achieved, highest reactor temperature is achieved with the highest switch time. The role of the insulation is not only to prevent heat loss to the environment, but also to provide additional thermal mass. During operation heat is transfer to and from the insulation. The insulation effect leads to higher reactor temperature up to a maximum thickness. The insulation effect diminishes as the reactor diameter increases, and results in higher temperatures at the centreline.
Keywords :
Catalytic combustion , Methane , reverse flow
Journal title :
CATALYSIS TODAY
Serial Year :
2006
Journal title :
CATALYSIS TODAY
Record number :
1235434
Link To Document :
بازگشت