Title of article :
Preparation and characterization of TiO2-based plasma-sprayed coatings for NOx abatement
Author/Authors :
V. Snapkauskien?، نويسنده , , V. Valin?ius، نويسنده , , V. Grigaitien?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
To minimize the formation of environmentally hazardous emissions, the catalytic reduction of NO by CO at metal oxide surfaces deposited by plasma spray technology on a Fe–Cr alloy support was studied. The paper outlines an experiment performed on a bench-scale reactor, describes the preparation of a catalytic monolithic reactor, the operating conditions as well as the properties of new-type catalytic coatings. As noted earlier in , the catalytic coatings containing an active component CuO effectively reduce the content of CO in the exhaust gas by over 90%. To enhance the NOx reduction by CO on the catalyst, TiO2 as a promoter and Ni powder as a catalyst were additionally incorporated in the initial mixture for catalytic coating formation. The structural and functional properties of the active layer – substrate system were analysed by methods of scanning electron microscopy (SEM), BET surface area, thermal analysis (DSC-TG), X-ray diffraction (XRD) and determination of roughness parameters. All the obtained coatings showed a good density, thermal stability and physical strength. However, irregularly agglomerated metal oxide layers had been formed in some places. The most active catalytic coating of Ni–Cu/TiO2–Al2O3 type showed an 80–90% removal for both NO and CO (CO/NO = 3) in the oxidizing gas mixture.
Keywords :
TiO2 , plasma spraying , Metallic substrate , Catalytic coating , NOx reduction
Journal title :
CATALYSIS TODAY
Journal title :
CATALYSIS TODAY