Title of article :
Replication Factor C from the Hyperthermophilic Archaeon Pyrococcus abyssi Does Not Need ATP Hydrolysis for Clamp-loading and Contains a Functionally Conserved RFC PCNA-binding Domain
Author/Authors :
Ghislaine Henneke، نويسنده , , Yannick Gueguen، نويسنده , , Didier Flament، نويسنده , , Philippe Azam، نويسنده , , Joël Querellou، نويسنده , , Jacques Dietrich، نويسنده , , Ulrich Hübscher، نويسنده , , Jean-Paul Raffin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
The molecular organization of the replication complex in archaea is similar to that in eukaryotes. Only two proteins homologous to subunits of eukaryotic replication factor C (RFC) have been detected in Pyrococcus abyssi (Pab). The genes encoding these two proteins are arranged in tandem. We cloned these two genes and co-expressed the corresponding recombinant proteins in Escherichia coli. Two inteins present in the gene encoding the small subunit (PabRFC-small) were removed during cloning. The recombinant protein complex was purified by anion-exchange and hydroxyapatite chromatography. Also, the PabRFC-small subunit could be purified, while the large subunit (PabRFC-large) alone was completely insoluble. The highly purified PabRFC complex possessed an ATPase activity, which was not enhanced by DNA. The Pab proliferating cell nuclear antigen (PCNA) activated the PabRFC complex in a DNA-dependent manner, but the PabRFC-small ATPase activity was neither DNA-dependent nor PCNA-dependent. The PabRFC complex was able to stimulate PabPCNA-dependent DNA synthesis by the Pabfamily D heterodimeric DNA polymerase. Finally, (i) the PabRFC-large fraction cross-reacted with anti-human-RFC PCNA-binding domain antibody, corroborating the conservation of the protein sequence, (ii) the human PCNA stimulated the PabRFC complex ATPase activity in a DNA-dependent way and (iii) the PabRFC complex could load human PCNA onto primed single-stranded circular DNA, suggesting that the PCNA-binding domain of RFC has been functionally conserved during evolution. In addition, ATP hydrolysis was not required either for DNA polymerase stimulation or PCNA-loading in vitro.
Keywords :
replication factor C , archaea , hyperthermophile , PCNA-binding domain , Pyrococcus abyssi
Journal title :
Journal of Molecular Biology
Journal title :
Journal of Molecular Biology