• Title of article

    Complexes of RecA with LexA and RecX Differentiate Between Active and Inactive RecA Nucleoprotein Filaments

  • Author/Authors

    Margaret S. VanLoock، نويسنده , , Xiong Yu، نويسنده , , Shixin Yang، نويسنده , , Vitold E. Galkin، نويسنده , , Hao Huang، نويسنده , , Shyamala S. Rajan، نويسنده , , Gideon J. Davies and Wayne F. Anderson، نويسنده , , Elizabeth A. Stohl، نويسنده , , Steven Seifert، نويسنده , , Edward H. Egelman، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    10
  • From page
    345
  • To page
    354
  • Abstract
    The bacterial RecA protein has been the dominant model system for understanding homologous genetic recombination. Although a crystal structure of RecA was solved ten years ago, we still do not have a detailed understanding of how the helical filament formed by RecA on DNA catalyzes the recognition of homology and the exchange of strands between two DNA molecules. Recent structural and spectroscopic studies have suggested that subunits in the helical filament formed in the RecA crystal are rotated when compared to the active RecA-ATP-DNA filament. We examine RecA-DNA-ATP filaments complexed with LexA and RecX to shed more light on the active RecA filament. The LexA repressor and RecX, an inhibitor of RecA, both bind within the deep helical groove of the RecA filament. Residues on RecA that interact with LexA cannot be explained by the crystal filament, but can be properly positioned in an existing model for the active filament. We show that the strand exchange activity of RecA, which can be inhibited when RecX is present at very low stoichiometry, is due to RecX forming a block across the deep helical groove of the RecA filament, where strand exchange occurs. It has previously been shown that changes in the nucleotide bound to RecA are associated with large motions of RecAʹs C-terminal domain. Since RecX binds from the C-terminal domain of one subunit to the nucleotide-binding core of another subunit, a stabilization of RecAʹs C-terminal domain by RecX can likely explain the inhibition of RecAʹs ATPase activity by RecX.
  • Keywords
    Recombination , Electron microscopy , helical polymers , Image analysis
  • Journal title
    Journal of Molecular Biology
  • Serial Year
    2003
  • Journal title
    Journal of Molecular Biology
  • Record number

    1243108