Title of article :
Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus
Author/Authors :
Jennifer M. Johnson، نويسنده , , Deborah A. Willits، نويسنده , , Mark J. Young، نويسنده , , Adam Zlotnick، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
10
From page :
455
To page :
464
Abstract :
Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the “labeled” nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV.
Keywords :
Bromovirus , RNA folding , capsid assembly , RNA chaperonin , virus assembly
Journal title :
Journal of Molecular Biology
Serial Year :
2004
Journal title :
Journal of Molecular Biology
Record number :
1243274
Link To Document :
بازگشت