• Title of article

    Destabilization of the Escherichia coli RNase H Kinetic Intermediate: Switching Between a Two-state and Three-state Folding Mechanism

  • Author/Authors

    Giulietta M. Spudich، نويسنده , , Erik J. Miller، نويسنده , , Susan Marqusee، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    10
  • From page
    609
  • To page
    618
  • Abstract
    Escherichia coli RNase H folds through a partially folded kinetic intermediate that mirrors a rarely populated, partially unfolded form detectable by native-state hydrogen exchange under equilibrium conditions. Residue 53 is at the interface of two helices known to be structured in this intermediate. Kinetic refolding studies on mutant proteins varying in size and hydrophobicity at residue 53 support a contribution of hydrophobicity to the stabilities of the kinetic intermediate and the transition state. Packing interactions also play a significant role in the stability of these two states, though they play a much larger role in the native-state stability. One dramatic mutation, I53D, results in the conversion from a three-state to a two-state folding mechanism, which is explained most easily through a simple destabilization of the kinetic intermediate such that it is no longer stable with respect to the unfolded state. These results demonstrate that interactions that stabilize an intermediate can accelerate folding if these same interactions are present in the transition state. Our results are consistent with a hierarchical model of folding, where the intermediate consists of native-like interactions, is on-pathway, and is productive for folding.
  • Keywords
    Protein folding , energy landscape , folding intermediates , ribonuclease H , protein stability
  • Journal title
    Journal of Molecular Biology
  • Serial Year
    2004
  • Journal title
    Journal of Molecular Biology
  • Record number

    1243286