Title of article :
Transcription Factors IIF and IIS and Nucleoside Triphosphate Substrates as Dynamic Probes of the Human RNA Polymerase II Mechanism
Author/Authors :
Chunfen Zhang، نويسنده , , Zachary F. Burton، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
The mechanism for elongation catalyzed by human RNA polymerase II (RNAP II) has been analyzed using millisecond phase transient state kinetics. Here, we apply a running start, two-bond, double-quench protocol. Quenching the reaction with EDTA indicates NTP loading into the active site followed by rapid isomerization. HCl quenching defines the time of phosphodiester bond formation. Model-independent and global kinetic analyses were applied to simulate the RNAP II mechanism for forward elongation through the synthesis of two specific phosphodiester bonds, modeling rate data collected over a wide range of nucleoside triphosphate concentrations. We report adequate two-bond kinetic simulations for the reaction in the presence of TFIIF alone and in the presence of TFIIF+TFIIS, providing detailed insight into the RNAP II mechanism and into processive RNA synthesis. RNAP II extends an RNA chain through a substrate induced-fit mechanism, termed NTP-driven translocation. After rapid isomerization, chemistry is delayed. At a stall point induced by withholding the next templated NTP, RNAP II fractionates into at least two active and one paused conformation, revealed as different forward rates of elongation. In the presence of TFIIF alone or in the presence of TFIIF+TFIIS, rapid rates are very similar; although, with TFIIF alone the complex is more highly poised for forward synthesis. Based on steady-state analysis, TFIIF was thought to suppress transcriptional pausing, but this view is misleading. TFIIF supports elongation and suppresses pausing by stabilizing the post-translocated elongation complex. When TFIIS is present, RNA cleavage and transcriptional restart pathways are supported, but TFIIS has a role in suppression of transient pausing, which is the most important contribution of TFIIS to elongation from a stall position.
Keywords :
NTP-driven translocation , transient state kinetics , RNA polymerase II , transcription factor IIF , transcription factor IIS
Journal title :
Journal of Molecular Biology
Journal title :
Journal of Molecular Biology