Title of article :
Molecular Mechanism of MLL PHD3 and RNA Recognition by the Cyp33 RRM Domain
Author/Authors :
Robert A. Hom، نويسنده , , Pei-Yun Chang، نويسنده , , Siddhartha Roy، نويسنده , , Catherine A. Musselman، نويسنده , , Karen C. Glass، نويسنده , , Anna I. Selezneva، نويسنده , , Or Gozani، نويسنده , , Rustem F. Ismagilov، نويسنده , , Michael L. Cleary، نويسنده , , Tatiana G. Kutateladze، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
145
To page :
154
Abstract :
The nuclear protein cyclophilin 33 (Cyp33) is a peptidyl-prolyl cis–trans isomerase that catalyzes cis–trans isomerization of the peptide bond preceding a proline and promotes folding and conformational changes in folded and unfolded proteins. The N-terminal RNA-recognition motif (RRM) domain of Cyp33 has been found to associate with the third plant homeodomain (PHD3) finger of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly(A) RNA sequence. Here, we report a 1.9 Å resolution crystal structure of the RRM domain of Cyp33 and describe the molecular mechanism of PHD3 and RNA recognition. The Cyp33 RRM domain folds into a five-stranded antiparallel β-sheet and two α-helices. The RRM domain, but not the catalytic module of Cyp33, binds strongly to PHD3, exhibiting a 2 μM affinity as measured by isothermal titration calorimetry. NMR chemical shift perturbation (CSP) analysis and dynamics data reveal that the β strands and the β2–β3 loop of the RRM domain are involved in the interaction with PHD3. Mutations in the PHD3-binding site or deletions in the β2–β3 loop lead to a significantly reduced affinity or abrogation of the interaction. The RNA-binding pocket of the Cyp33 RRM domain, mapped on the basis of NMR CSP and mutagenesis, partially overlaps with the PHD3-binding site, and RNA association is abolished in the presence of MLL PHD3. Full-length Cyp33 acts as a negative regulator of MLL-induced transcription and reduces the expression levels of MLL target genes MEIS1 and HOXA9. Together, these in vitro and in vivo data provide insight into the multiple functions of Cyp33 RRM and suggest a Cyp33-dependent mechanism for regulating the transcriptional activity of MLL.
Keywords :
RRM domain , PHD finger , Cyp33 , MLL , Mechanism
Journal title :
Journal of Molecular Biology
Serial Year :
2010
Journal title :
Journal of Molecular Biology
Record number :
1251884
Link To Document :
بازگشت