Title of article :
Analysis of Binding Site Hot Spots on the Surface of Ras GTPase
Author/Authors :
Greg Buhrman، نويسنده , , Casey O?Connor، نويسنده , , Brandon Zerbe، نويسنده , , Bradley M. Kearney، نويسنده , , Raeanne Napoleon، نويسنده , , Elizaveta A. Kovrigina، نويسنده , , Sandor Vajda، نويسنده , , Dima Kozakov، نويسنده , , Evgenii L. Kovrigin، نويسنده , , Carla Mattos، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the “off” and “on” allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.
Keywords :
Ras isoforms , drug target , binding site hot spots , Ras dynamics , allosteric switch
Journal title :
Journal of Molecular Biology
Journal title :
Journal of Molecular Biology