Title of article :
Structural and Mechanistic Characterization of Leukocyte-Type Core 2 β1,6-N-Acetylglucosaminyltransferase: A Metal-Ion-Independent GT-A Glycosyltransferase
Author/Authors :
John E. Pak، نويسنده , , Malathy Satkunarajah، نويسنده , , Jayaraman Seetharaman، نويسنده , , James M. Rini، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Leukocyte-type core 2 β1,6-N-acetylglucosaminyltransferase (C2GnT-L) is an inverting, metal-ion-independent glycosyltransferase that catalyzes the formation of mucin-type core 2 O-glycans. C2GnT-L belongs to the GT-A fold, yet it lacks the metal ion binding DXD motif characteristic of other nucleoside disphosphate GT-A fold glycosyltransferases. To shed light on the basis for its metal ion independence, we have solved the X-ray crystal structure (2.3 Å resolution) of a mutant form of C2GnT-L (C217S) in complex with the nucleotide sugar product UDP and, using site-directed mutagenesis, examined the roles of R378 and K401 in both substrate binding and catalysis. The structure shows that C2GnT-L exists in an “open” conformation and a “closed” conformation and that, in the latter, R378 and K401 interact with the β-phosphate moiety of the bound UDP. The two conformations are likely to be important in catalysis, but the conformational changes that lead to their interconversion do not resemble the nucleotide-sugar-mediated loop ordering observed in other GT-A glycosyltransferases. R378 and K401 were found to be important in substrate binding and/or catalysis, an observation consistent with the suggestion that they serve the same role played by metal ion in all of the other GT-A glycosyltransferases studied to date. Notably, R378 and K401 appear to function in a manner similar to that of the arginine and lysine residues contained in the RX4-5K motif found in the retaining GT-B glycosyltransferases.
Keywords :
core 2 , C2GnT-L , GT-B , glycosyltransferase , GT-A
Journal title :
Journal of Molecular Biology
Journal title :
Journal of Molecular Biology