Title of article :
Fragmentation-Tree Density Representation for Crystallographic Modelling of Bound Ligands
Author/Authors :
Gerrit G. Langer، نويسنده , , Guillaume X. Evrard، نويسنده , , Ciaran G. Carolan، نويسنده , , Victor S. Lamzin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
12
From page :
211
To page :
222
Abstract :
The identification and modelling of ligands into macromolecular models is important for understanding moleculeʹs function and for designing inhibitors to modulate its activities. We describe new algorithms for the automated building of ligands into electron density maps in crystal structure determination. Location of the ligand-binding site is achieved by matching numerical shape features describing the ligand to those of density clusters using a “fragmentation-tree” density representation. The ligand molecule is built using two distinct algorithms exploiting free atoms with inter-atomic connectivity and Metropolis-based optimisation of the conformational state of the ligand, producing an ensemble of structures from which the final model is derived. The method was validated on several thousand entries from the Protein Data Bank. In the majority of cases, the ligand-binding site could be correctly located and the ligand model built with a coordinate accuracy of better than 1 Å. We anticipate that the method will be of routine use to anyone modelling ligands, lead compounds or even compound fragments as part of protein functional analyses or drug design efforts.
Keywords :
electron density map , small-molecule binders , Shape , Hybrid approach , Drug Design
Journal title :
Journal of Molecular Biology
Serial Year :
2012
Journal title :
Journal of Molecular Biology
Record number :
1254473
Link To Document :
بازگشت