Title of article :
Anisotropic hardening and non-associated flow in proportional loading of sheet metals
Author/Authors :
Thomas B. Stoughton، نويسنده , , Jeong-Whan Yoon ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
41
From page :
1777
To page :
1817
Abstract :
Conventional isotropic hardening models constrain the shape of the yield function to remain fixed throughout plastic deformation. However, experiments show that hardening is only approximately isotropic under conditions of proportional loading, giving rise to systematic errors in calculation of stresses based on models that impose the constraint. Five different material data for aluminum and stainless steel alloys are used to calibrate and evaluate five material models, ranging in complexity from a von Mises’ model based on isotropic hardening to a non- associated flow rule (AFR) model based on anisotropic hardening. A new model is described in which four stress–strain functions are explicitly integrated into the yield criterion in closed form definition of the yield condition. The model is based on a non-AFR so that this integration does not affect the accuracy of the plastic strain components defined by the gradient of a separate plastic potential function. The model not only enables the elimination of systematic errors for loading along the four loading conditions, but also leads to a significant reduction of systematic errors in other loading conditions to no higher than 1.5% of the magnitude of the predicted stresses, far less that errors obtained under isotropic hardening, and at a level comparable to experimental uncertainty in the stress measurement. The model is expected to lead to a significant improvement in stress prediction under conditions dominated by proportional loading, and this is expected to directly improve the accuracy of springback, tearing, and earing predictions for these processes. In addition, it is shown that there is no consequence on MK necking localization due to the saturation of the yield surface in pure shear that occurs with the aluminum alloys using the present model.
Keywords :
Anisotropic hardening , constitutive law , Non-associated flow rule , Yield function
Journal title :
International Journal of Plasticity
Serial Year :
2009
Journal title :
International Journal of Plasticity
Record number :
1254691
Link To Document :
بازگشت