Title of article :
Structural Insights on the Plant Salt-Overly-Sensitive 1 (SOS1) Na+/H+ Antiporter
Author/Authors :
Rafael N??ez-Ram?rez، نويسنده , , Mar?a José S?nchez-Barrena، نويسنده , , Irene Villalta، نويسنده , , Juan F. Vega، نويسنده , , José M. Pardo، نويسنده , , Francisco J. Quintero، نويسنده , , Javier Martinez-Salazar، نويسنده , , Armando Albert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
12
From page :
283
To page :
294
Abstract :
The Arabidopsis thaliana Na+/H+ antiporter salt-overly-sensitive 1 (SOS1) is essential to maintain low intracellular levels of toxic Na+ under salt stress. Available data show that the plant SOS2 protein kinase and its interacting activator, the SOS3 calcium-binding protein, function together in decoding calcium signals elicited by salt stress and regulating the phosphorylation state and the activity of SOS1. Molecular genetic studies have shown that the activation implies a domain reorganization of the antiporter cytosolic moiety, indicating that there is a clear relationship between function and molecular structure of the antiporter. To provide information on this issue, we have carried out in vivo and in vitro studies on the oligomerization state of SOS1. In addition, we have performed electron microscopy and single-particle reconstruction of negatively stained full-length and active SOS1. Our studies show that the protein is a homodimer that contains a membrane domain similar to that found in other antiporters of the family and an elongated, large, and structured cytosolic domain. Both the transmembrane (TM) and cytosolic moieties contribute to the dimerization of the antiporter. The close contacts between the TM and the cytosolic domains provide a link between regulation and transport activity of the antiporter.
Keywords :
Electron microscopy , membrane protein , plant salt tolerance , protein structure , Na+ transport
Journal title :
Journal of Molecular Biology
Serial Year :
2012
Journal title :
Journal of Molecular Biology
Record number :
1255008
Link To Document :
بازگشت