Title of article :
Anatomy of coupled constitutive models for ratcheting simulation
Author/Authors :
Shafiqul Bari، نويسنده , , TASNIM HASSAN، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
This paper critically evaluates the performance of five constitutive models in predicting ratcheting responses of carbon steel for a broad set of uniaxial and biaxial loading histories. The models proposed by Prager, Armstrong and Frederick, Chaboche, Ohno-Wang and Guionnet are examined. Reasons for success and failure in simulating ratcheting by these models are elaborated. The bilinear Prager and the nonlinear Armstrong-Frederick models are found to be inadequate in simulating ratcheting responses. The Chaboche and Ohno-Wang models perform quite well in predicting uniaxial ratcheting responses; however, they consistently overpredict the biaxial ratcheting responses. The Guionnet model simulates one set of biaxial ratcheting responses very well, but fails to simulate uniaxial and other biaxial ratcheting responses. Similar to many earlier studies, this study also indicates a strong influence of the kinematic hardening rule or backstress direction on multiaxial ratcheting simulation. Incorporation of parameters dependent on multiaxial ratcheting responses, while dormant for uniaxial responses, into Chaboche-type kinematic hardening rules may be conducive to improve their multiaxial ratcheting simulations. The uncoupling of the kinematic hardening rule from the plastic modulus calculation is another potentially viable alternative. The best option to achieve a robust model for ratcheting simulations seems to be the incorporation of yield surface shape change (formative hardening) in the cyclic plasticity model.
Keywords :
Ratcheting , Constitutive modeling and simulation. , cyclic plasticity
Journal title :
International Journal of Plasticity
Journal title :
International Journal of Plasticity