• Title of article

    Protein dynamics revealed in the excitonic spectra of single LH2 complexes

  • Author/Authors

    Leonas Valkunas، نويسنده , , Julius Janusonis، نويسنده , , Danielis Rutkauskas، نويسنده , , Rienk van Grondelle، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    7
  • From page
    269
  • To page
    275
  • Abstract
    The fluorescence emission spectrum of single peripheral light-harvesting (LH2) complexes of the photosynthetic purple bacterium Rhodopseudomonas acidophila exhibits remarkable dynamics on a time scale of several minutes. Often the spectral properties are quasi-stable; sometimes large spectral jumps to the blue or to the red are observed. To explain the dynamics, every pigment is proposed to be in two conformational substates with different excitation energies, which originate from the conformational state of the protein as a result of pigment–protein interaction. Due to the excitonic coupling in the ring of 18 pigments, the two-state assumption generates a substantial amount of distinct spectroscopic states, which reflect part of the inhomogeneous distributed spectral properties of LH2. To describe the observed dynamics, spontaneous and light-induced transitions are introduced between the two states. For each ‘realization of the disorder’, the spectral properties are calculated using a disordered exciton model combined with the modified Redfield theory to obtain realistic spectral line shapes. The single-molecule fluorescence peak (FLP) distribution, the distribution dependence on the excitation intensity, and the FLP time traces are well described within the framework of this model.
  • Keywords
    fluorescence , exciton , LH2 , Single Molecule , Dynamics
  • Journal title
    Journal of Luminescence
  • Serial Year
    2007
  • Journal title
    Journal of Luminescence
  • Record number

    1263124