Author/Authors :
Weizhi Li، نويسنده , , Yadong Jiang، نويسنده , , Tao Wang، نويسنده ,
Abstract :
Electroluminescence (EL) mechanism of dye-doped organic light-emitting diodes (OLEDs) was investigated by using three familiar fluorescent dyes, i.e., 5,12-Dihydro-5,12-dimethylquino [2,3-b]acridine-7,14-dione (DMQA), 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), and 5,6,11,12-tetraphenylnaphthacene (Rubrene). EL spectra of the doped devices with structure of indium tin oxide (ITO)/N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′- diamine (NPB) (40 nm)/tris-(8-hydroxyquinolate)-aluminum (Alq3) (x nm, x=0–40 nm)/dye: Alq3 (weight ratio≈1%, 2 nm)/Alq3 (48−x nm)/MgAg indicated that direct carrier trapping (DCT) process dominated light emission of devices. As a result, investigation of carrier-recombination site via doping, which is conventionally applied in OLEDs, is questionable since the doping site and the dopant itself may significantly influence the carrier-recombination process in the doped devices.
Keywords :
dopant , Energy transferring , Direct carrier trapping , exciton , Carriers recombination