Title of article :
Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation
Author/Authors :
Haishen Lüa، نويسنده , , b، نويسنده , , Zhongbo Yua، نويسنده , , c، نويسنده , , Yonghua Zhua، نويسنده , , Sam Draked، نويسنده , , Zhenchun Haoa، نويسنده , , Edward A. Sudickyb، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
395
To page :
406
Abstract :
With well-determined hydraulic parameters in a hydrologic model, a traditional data assimilation method (such as the Kalman filter and its extensions) can be used to retrieve root zone soil moisture under uncertain initial state variables (e.g., initial soil moisture content) and good simulated results can be achieved. However, when the key soil hydraulic parameters are incorrect, the error is non-Gaussian, as the Kalman filter will produce a persistent bias in its predictions. In this paper, we propose a method coupling optimal parameters and extended Kalman filter data assimilation (OP-EKF) by combining optimal parameter estimation, the extended Kalman filter (EKF) assimilation method, a particle swarm optimization (PSO) algorithm, and Richards’ equation. We examine the accuracy of estimating root zone soil moisture through the optimal parameters and extended Kalman filter data assimilation method by using observed in situ data at the Meiling experimental station, China. Results indicate that merely using EKF for assimilating surface soil moisture content to obtain soil moisture content in the root zone will produce a persistent bias between simulated and observed values. Using the OP-EKF assimilation method, estimates were clearly improved. If the soil profile is heterogeneous, soil moisture retrieval is accurate in the 0–50 cm soil profile and is inaccurate at 100 cm depth. Results indicate that the method is useful for retrieving root zone soil moisture over large areas and long timescales even when available soil moisture data are limited to the surface layer, and soil moisture content are uncertain and soil hydraulic parameters are incorrect.
Keywords :
Particle swarm optimization algorithm , Root zone , Richards’ equation , Optimal parameters and extended Kalman filter data assimilation method , Soil moisture content
Journal title :
Advances in Water Resources
Serial Year :
2011
Journal title :
Advances in Water Resources
Record number :
1272369
Link To Document :
بازگشت