Abstract :
Uncertainty plagues every effort to model subsurface processes and every decision made on the basis of such models. Given this pervasive uncertainty, virtually all practical problems in hydrogeology can be formulated in terms of (ecologic, monetary, health, regulatory, etc.) risk. This review deals with hydrogeologic applications of recent advances in uncertainty quantification, probabilistic risk assessment (PRA), and decision-making under uncertainty. The subjects discussed include probabilistic analyses of exposure pathways, PRAs based on fault tree analyses and other systems-based approaches, PDF (probability density functions) methods for propagating parametric uncertainty through a modeling process, computational tools (e.g., random domain decompositions and transition probability based approaches) for quantification of geologic uncertainty, Bayesian algorithms for quantification of model (structural) uncertainty, and computational methods for decision-making under uncertainty (stochastic optimization and decision theory). The review is concluded with a brief discussion of ways to communicate results of uncertainty quantification and risk assessment.
Keywords :
Probabilistic Risk Analysis , uncertainty quantification , decision under uncertainty , stochastic optimization