Title of article :
Influence of conduit network geometry on solute transport in karst aquifers with a permeable matrix
Author/Authors :
Michael J. RonayneCorresponding author contact information، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
In karst aquifers with significant matrix permeability, water and solutes are exchanged between the conduits and carbonate matrix. Transport through the matrix increases the spread of solutes and increases travel times. This study numerically evaluates advective solute transport in synthetic karst systems that contain 3D branching conduit networks. Particle tracking is performed to analyze the spatial and temporal transport history of solute that arrives at the conduit outlet. Three measures of transport connectivity are used to quantify the solute migration behavior: the skewness of the particle arrival time distribution, the normalized fifth percentile of arrival times, and the fraction of the total travel time that occurs within conduits. All three of these metrics capture the influence of conduit network geometry on solute transport. A more tortuous network leads to enhanced conduit-matrix mixing, which reduces the transport connectivity and yields a broader distribution of solute arrival times. These results demonstrate that the conduit network geometry is an important control on solute transport in karst systems with a permeable matrix.
Keywords :
Karst aquifer , Numerical Modeling , Solute transport , Transport connectivity , Percolation model , Conduit network
Journal title :
Advances in Water Resources
Journal title :
Advances in Water Resources