Title of article :
Groundwater ages in coastal aquifers
Author/Authors :
Vincent E.A. Posta، نويسنده , , b، نويسنده , , Alexander Vandenbohedec، نويسنده , , Adrian D. Wernera، نويسنده , , b، نويسنده , , Maimuna، نويسنده , , Michael D. Teubnera، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
11
From page :
1
To page :
11
Abstract :
The interpretation of groundwater ages in coastal aquifers requires an improved understanding of relationships between age distributions and the processes accompanying dispersive, density-dependent flow and transport. This study uses numerical modeling to examine the influence of mixing and a selection of other hydrogeological factors on steady-state age distributions in coastal aquifers. Three methods of age estimation are compared: the piston flow age, the direct age, and the tracer-based age. These are applied to various forms of the Henry problem, as well as to three variants of a larger, hypothetical coastal aquifer. Circulation of water within the seawater wedge results in markedly higher ages in the transition zone than in the underlying saltwater or overlying freshwater. Piston flow ages show a sharp increase where the freshwater and saltwater systems meet, whereas direct- and tracer-based simulations result in a smoother age distribution, as expected. Greater degrees of mixing result in larger differences between piston flow and direct or tracer-based ages, and bring about lower ages in the saltwater wedge. Tracer-based ages are preferred over direct- and piston flow ages for comparison with field data, especially in cases with wide transition zones. Despite the relatively simple conditions used for the simulations, complex age distributions with depth were obtained. Hence, the assessment of ages in field cases will be difficult, particularly where accurate ages in the transition zone are sought.
Keywords :
coastal aquifer , Seawater intrusion , Numerical model , Groundwater age
Journal title :
Advances in Water Resources
Serial Year :
2013
Journal title :
Advances in Water Resources
Record number :
1272744
Link To Document :
بازگشت