Author/Authors :
Xiaozhou Wang، نويسنده , , Jun Wang، نويسنده , , Hao Wang، نويسنده ,
Abstract :
Two kinds of high-temperature organic adhesives were prepared and successfully applied to join SiC ceramic. One adhesive was composed of preceramic polymer (V-PMS) and B4C powder (HTA-1), and the other was composed of V-PMS, B4C powder and low melting point glass powder (HTA-2). The properties of the obtained adhesives were investigated by TGA, XRD, bonding test and SEM analysis. The results show that the obtained adhesives exhibit outstanding heat-resistant property and excellent bonding strength. The bonding strength of HTA-1 treated at 200 °C, 400 °C, 600 °C were 26.8 MPa, 18.9 MPa, 7.3 MPa, respectively. When the temperature increased to 800 °C or even higher, the shear strengths of the joints were enhanced to over 50 MPa. Moreover, by adding glass powder as the second filler, it was found that the minimum shear strength of HTA-2 was enhanced to 16.4 MPa. The excellent performances of the obtained adhesives make them as promising candidates for joining SiC ceramics for high-temperature applications.
Keywords :
C. Thermal properties , D. SiC , A. Joining , C. Strength