Title of article :
Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones
Author/Authors :
J?rg Hermann، نويسنده , , Carl Spandler، نويسنده , , Alistair Hack، نويسنده , , Andrey V. Korsakov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
19
From page :
399
To page :
417
Abstract :
High-pressure (HP) and ultra-high pressure (UHP) terranes are excellent natural laboratories to study subduction-zone processes. In this paper we give a brief theoretical background and we review experimental data and observations in natural rocks that constrain the nature and composition of the fluid phase present in HP and UHP rocks. We argue that a fluid buffered by a solid residue is compositionally well defined and is either an aqueous fluid (total amount of dissolved solids  30 kbar) with peak temperatures of about 700 ± 50 °C. At higher temperatures, hydrous granitic melts occur whereas at lower temperatures aqueous fluids coexists with eclogite-facies minerals. This argument is complemented by evidence on the nature of the fluid phase from high-pressure terrains. We show that in the diamond-bearing, high-temperature UHP rocks from the Kokchetav Massif there are not only hydrous felsic melts, but probably also carbonate and sulfide melts present. Hydrous quartzo-feldspathic melts are mainly produced in high temperature UHP rocks and their composition is relatively well constrained from experiments and natural rocks. In contrast, constraining the composition of aqueous fluids is more problematic. The combined evidence from experiments and natural rocks indicates that aqueous fluids liberated at the blueschist to eclogite facies transition are dilute. They contain only moderate amounts of LILE, Sr and Pb and do not transport significant amounts of key trace elements such as LREE, U and Th. This indicates that there is a decoupling of water and trace element release in subducted oceanic crust and that aqueous fluids are unable to enrich the mantle wedge significantly. Instead we propose that fluid-present melting in the sediments on top of the slab is required to transfer significant amounts of trace elements from the slab to the mantle wedge. For such a process to be efficient, top slab temperature must be at least 700–750 °C at sub-arc depth. Slab melting is likely to be triggered by fluids that derive from dehydration of mafic and ultramafic rocks in colder (deeper) portions of the slab.
Keywords :
melt , Experimental petrology , UHP metamorphism , fluids , Trace elements
Journal title :
lithos
Serial Year :
2006
Journal title :
lithos
Record number :
1286736
Link To Document :
بازگشت