Title of article
Biotite stability in peraluminous granitic melts: Compositional dependence and application to the generation of two-mica granites in the South Bohemian batholith (Bohemian Massif, Czech Republic)
Author/Authors
Milo? René، نويسنده , , Francois Holtz، نويسنده , , Cherhui Luo، نويسنده , , Oliver Beermann، نويسنده , , Jan Stelling، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
16
From page
538
To page
553
Abstract
Crystallization experiments have been conducted in the system Na2O–K2O–MgO–FeO–Al2O3–SiO2–H2O (with 4% normative corundum) in order to constrain the stability of biotite as a function of water activity and the Mg# of biotite [Mg/(Mg +Fetotal)] in equilibrium with peraluminous granitic melts. The temperature at which biotite breakdown starts is strongly dependent on the Mg# of biotite. At 500 MPa, the temperature of biotite breakdown to form orthopyroxene increases from 750 °C to 830 °C, as the Mg# of biotite increases from 0.4 to 0.5. Considering that the system investigated is relevant for Ca-poor peraluminous biotite-bearing rocks (metapelites), the biotite dehydration curves obtained are used to discuss the melting reactions and the temperatures that lead to the formation of two distinct types of two-mica granites found in the South Bohemian batholith (specifically the Eisgarn and Deštná granites). The phase relationships were determined experimentally for the composition of these two granites in order to constrain the composition of the biotite in equilibrium with the melt in the protoliths. We demonstrate that Eisgarn granitic melts may have been generated at temperatures in the range 830–850 °C from melting reactions involving biotite with a Mg# up to 0.5 as a reactant. In contrast, Deštná granitic melts cannot have been generated from dehydration melting reactions involving biotite.
Keywords
EXPERIMENTS , S-type granite , Biotite stability , CrystallisationCrystal fractionation
Journal title
lithos
Serial Year
2008
Journal title
lithos
Record number
1286959
Link To Document