Title of article
Late Cretaceous (100–89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet
Author/Authors
Lin Ma، نويسنده , , Qiang Wang، نويسنده , , Derek A. Wyman، نويسنده , , et al، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2013
Pages
18
From page
315
To page
332
Abstract
Abstract Rapid Mesozoic–Early Cenozoic crustal growth in the Gangdese area, southern Tibet, has commonly been attributed to pre-collisional and syn-collisional underplating of mantle-derived magmas. Here, we report on adakitic magnesian charnockites (i.e., hypersthene-bearing diorites and granodiorites) near Milin, in eastern Gangdese, that provide new insights into the crustal growth process of the region. Zircon U–Pb analyses of seven charnockite samples indicate that they were generated in the Late Cretaceous (100–89 Ma). They exhibit variable SiO2 (53.9 to 65.7 wt.%) contents, high Na2O/K2O (1.6 to 14.4) and Sr/Y (27.2 to 138.7) ratios, low Y (6.5 to 18.5 ppm), heavy rare earth element (e.g., Yb = 0.6 to 1.6 ppm) and Th (0.20–2.39 ppm) contents and Th/La (0.02–0.23) ratios, with relatively high Mg# (46 to 56) and MgO (2.0 to 4.5 wt.%) values. They are characterized isotopically by high and slightly variable εNd(t) (+ 2.4 to + 4.0) and εHf(t) (+ 10.1 to + 15.8) values with relatively low and consistent (87Sr/86Sr)i (0.7042 to 0.7043) ratios. Their pyroxenes have high crystallization temperatures (876 to 949 °C). The Milin charnockites were most probably produced by partial melting of subducted Neo-Tethyan oceanic crust that was followed by adakitic melt–mantle interaction, minor crustal assimilation and fractional crystallization of amphibole + plagioclase. The upwelling asthenosphere, triggered by the roll-back of subducted Neo-Tethyan oceanic lithosphere, provided the heat for slab melting. Therefore, we suggest that, in addition to pre-collisional and syn-collisional underplating of mantle-derived magmas, the recycling of subducted oceanic crust has also played an important role in continental crustal growth in southern Tibet.
Keywords
Tibet , Adakitic charnockite , Slab melting , Roll-back , Crust growth , Gangdese batholith
Journal title
lithos
Serial Year
2013
Journal title
lithos
Record number
1288228
Link To Document