Title of article :
Lateral flow in loamy to sandy Kandiudults of the Upper Coastal Plain of Georgia (USA)
Author/Authors :
J. N. Shaw، نويسنده , , D. D. Bosch، نويسنده , , L. T. West، نويسنده , , C. C. Truman، نويسنده , , D. E. Radcliffe، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
Interest in site-specific agronomic management in intensively cropped regions necessitates characterization of subsurface water movement for efficient water management (irrigation timing) and control of off-site agrichemical movement. Soils formed in fluvial sediments in portions of the Upper Coastal Plain of Georgia (USA) are extensively used for peanut, cotton, and corn production. Certain proximate soils in this region possess contrasting subsoil properties, and it was hypothesized that these differences would have major effects on water redistribution across the landscape. This could be important in irrigation management, where soils possessing increased impedance to vertical flow could require decreased irrigation as opposed to soils without vertical flow restrictions. At a site near Plains, GA. (USA), hydraulic properties of soils with differences in overlying sand thickness and contrasting argillic horizon textures (sandy vs. loamy) were evaluated. The soils were predominantly in loamy and sandy families of Typic, Arenic, and Grossarenic Kandiudults. Laboratory measurements, field monitoring of matric potentials under simulated and natural rainfall, and modeling (VS2DT) were utilized to evaluate soil hydraulic properties. Reduction in vertical Ks occurred in horizons containing higher clay (argillic horizon). Changes in tension and build ups in hydraulic gradients associated with infiltration and redistribution events existed above and within horizons with low Ks. Evidence suggested there was less groundwater recharge occurring in the loamy than in the sandy pedons, suggesting more pronounced lateral flow occurred in the loamier soils. Model simulations of water movement across a slightly sloping (1%) simulated landscape indicated lateral gradients of flow existed within the solum of these soils. Analyses of tracer (Br) movement suggested a very slight lateral redistribution occurred within a relatively short monitoring period within the sandy pedonʹs Bt1 horizon, and the Bt2 and Bt3 horizons of the loamy pedon. Evidence suggested both loamy and sandy argillic horizons slightly, but not overwhelmingly, induced lateral flow on these landscapes.
Keywords :
Vadose zone , Hydraulic conductivity , coastal plains , Lateral flow