Author/Authors :
Andrew P. Negri، نويسنده , , Andrew J. Heyward، نويسنده ,
Abstract :
Accidental oil spills from ships or rigs and inputs of effluent such as production formation water (PFW) are key perceived threats to tropical biota from industry activities. Scleractinian corals are an important functional component of tropical reefs and the abundance, diversity and resilience of coral communities can be used as an indicator of ecosystem health. In this paper, we report the effects of petroleum products, including water accommodated fractions (WAF) of crude oil, PFW and dispersant (Corexit 9527), on fertilization and larval metamorphosis of the widespread scleractinian coral, Acropora millepora (Ehrenberg, 1834) in laboratory-based assays. At 20% v/v PFW fertilization was inhibited by 25%. This concentration was equivalent 0.0721 mg l−1 total hydrocarbon (THC). In contrast, larval metamorphosis was more sensitive to this effluent, with 98% metamorphosis inhibited at the same concentration. Crude oil WAF did not inhibit fertilization of gametes until dispersant was introduced. Dispersed oil was slightly more toxic to fertilization than dispersant alone, suggesting toxicity to that event may be additive. The minimum concentration of dispersed oil which inhibited fertilization was 0.0325 mg l−1 THC. Larval metamorphosis was more sensitive than fertilization to crude oil. Although crude oil and dispersant inhibited larval metamorphosis individually, this toxicity was magnified when larvae were exposed to combinations of both. Crude oil inhibited metamorphosis at 0.0824 mg l−1 THC and at 0.0325 mg l−1 THC when dispersed in 10% v/v (dispersant/oil). Management of petroleum-related risks to spawning corals should consider not only the occurrence of the annual coral spawning event, but also the subsequent 1–3-week period during which most larval metamorphosis and recruitment occur.