Title of article :
Composition of characteristic soils on the raised atoll Bellona, Solomon Islands
Author/Authors :
Ole K. Borggaard، نويسنده , , Christian Bender Koch، نويسنده , , Bo Elberling، نويسنده , , Henrik Breuning-Madsen، نويسنده , , Lars Stemmerik، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
9
From page :
186
To page :
194
Abstract :
Knowledge is scarce about the composition of soils on Bellona and other Pacific atolls. Such knowledge is important as it is closely related to sustainable land use of these special soils formed on carbonatic/phosphatic materials. Therefore, the micromorphological, chemical and mineralogical composition of samples from genetic horizons in three dominant Bellonese soils (Malanga, Kenge Ungi and Kenge Toaha) and underlying rock (Tanahu) were investigated. Tanahu mainly consists of dolomite, but this mineral is absent in the three soils, which are dominated by phosphate-containing minerals. The Malanga soil is strongly dominated by Ca and P with minor amounts of Al, F and Fe present in fluorapatite, hydroxyapatite and crandallite. In contrast, Al, Fe and P dominate in the Kenge Ungi and Kenge Toaha soils in accordance with a mineralogy consisting of crandallite together with aluminum oxides (gibbsite/boehmite) and iron oxides, mainly goethite with minor contents of hematite. The observed carbonate for phosphate substitution in the apatites and crandallite is important as it indicates an increased phosphate availability in the soils. All three soil samples contain ≤ 1% Si and very little K and Mg. Total contents of essential microelements are considered adequate, but the rather high contents of Sr and U, especially in the Kenge Ungi soil may be problematic. Although the composition of the soils suggests substantial fertility and resilience, the lack of K-containing weatherable minerals (silicate minerals) is in line with a very low K (and low Mg) content and explains why fertilization may be needed to sustain future cultivation of these special soils. Due to a possible low bioavailability of Fe, Mn and maybe other micronutrients at the circumneutral pH of these carbonatic/phosphatic soils as well as the rather high contents of Sr and U, it may be recommended to test element availability using appropriate chemical soil tests supplemented by plant experiments to ensure safe and sustainable (optimal) soil use. However, according to the local farmers, the Malanga, Kenge Toaha and Kenge Ungi soils are considered well suited for production of the preferred crops.
Keywords :
apatite , Crandallite , Phosphate , dolomite , Resilience , Fertility
Journal title :
GEODERMA
Serial Year :
2012
Journal title :
GEODERMA
Record number :
1298355
Link To Document :
بازگشت