Title of article :
S1 subsite in snake venom thrombin-like enzymes: can S1 subsite lipophilicity be used to sort binding affinities of trypsin-like enzymes to small-molecule inhibitors? Original Research Article
Author/Authors :
Floriano P. Silva Jr.، نويسنده , , Salvatore G. De Simone، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
17
From page :
2571
To page :
2587
Abstract :
Thrombin-like enzymes isolated from snake venoms comprise a group of serine proteinases responsible for many important coagulation disorders in the envenomed victims. Besides, these proteinases have great biotechnological interest as antithrombotic agents and as diagnostic tools. However, in spite of the recent overflow of snake venom thrombin-like enzymes (SVTLEs) on protein sequence databases, there is a lack of three-dimensional (3D) structural information on this family. Without such 3D structures available many aspects of the biological function and biochemical properties of these enzymes still remain obscure. Therefore, we have gone through a series of computational techniques, which enabled us to identify the set of residues involved in molecular recognition of inhibitors bound to the S1 subsite of snake venom thrombin-like enzymes (SVTLEs) and ultimately conclude that nonpolar (van der Waals) intermolecular interactions and ligandʹs hydrophobicity are the most important factors affecting binding affinities to the S1 subsite of a SVTLE isolated from the venom of Lachesis muta muta (Lmm-TLE). Consequently, we have proposed that S1 subsite lipophilicity may be used to sort binding affinities of trypsin-like enzymes to small molecules by showing that the inhibitory potency of several S1-directed compounds follows subsite lipophilicity among Lmm-TLE and other three homologous proteases. Noteworthy, in the course of our analyses we determined that thrombinʹs S1 subsite should, in fact, be considered less lipophilic than that of trypsin if we account for the presence of the sodium-controlled water channel communicating with the S1 subsite in the coagulant enzyme.
Keywords :
trypsin , Snake venom thrombin-like enzymes , Molecular modeling , S1 subsite lipophilicity , Binding affinity
Journal title :
Bioorganic and Medicinal Chemistry
Serial Year :
2004
Journal title :
Bioorganic and Medicinal Chemistry
Record number :
1303064
Link To Document :
بازگشت