Title of article :
QSAR modeling of anti-invasive activity of organic compounds using structural descriptors Original Research Article
Author/Authors :
Alan R. Katritzky، نويسنده , , Minati Kuanar، نويسنده , , Dimitar A. Dobchev، نويسنده , , Barbara W.A. Vanhoecke، نويسنده , , Mati Karelson، نويسنده , , Virinder S. Parmar، نويسنده , , Christian V. Stevens، نويسنده , , Marc E. Bracke، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
The anti-invasive activity of 139 compounds was correlated by an artificial neural network approach with descriptors calculated solely from the molecular structures using CODESSA Pro. The best multilinear regression method implemented in CODESSA Pro was used for a pre-selection of descriptors. The resulting nonlinear (artificial neural network) QSAR model predicted the exact class for 66 (71%) of the training set of 93 compounds and 32 (70%) of validation set of 46 compounds. The standard deviation ratios for the both training and validation sets are less than unity, indicating a satisfactory predictive capability for classification of the nature of the anti-invasive activity data. The proposed model can be used for the prediction of the anti-invasive activity of novel classes of compounds enabling a virtual screening of large databases of anticancer drugs.
Keywords :
QSAR , Molecular descriptors , Polyphenols , Anti-invasive activity , Artificial neural network
Journal title :
Bioorganic and Medicinal Chemistry
Journal title :
Bioorganic and Medicinal Chemistry