Title of article :
G-quadruplex structures of human telomere DNA examined by single molecule FRET and BrG-substitution Original Research Article
Author/Authors :
Kenji Okamoto، نويسنده , , Yuta Sannohe، نويسنده , , Tomoko Mashimo، نويسنده , , Hiroshi Sugiyama، نويسنده , , Masahide Terazima، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
The human telomere is known to form the G-quadruplex structure to inhibit the activity of telomerase. Its detailed structure has been of great interest. Recently, two kinds of the parallel–antiparallel hybrid structures have been specified in K+ solution. However, the G-quadruplex structure is generally thought to be in equilibrium among different structures. Here, we describe the single-pair fluorescence resonance energy transfer (sp-FRET) experiments on telomere samples with bromoguanine (BrG)-substitutions, which control the G-quadruplex structures, at different positions and one without any substitution. The observed FRET distributions were decomposed into five components and the relative population of these components depended on the BrG-substitution positions. In order to consistently explain the variety of conformations, we proposed a novel structural model, the so-called triple-strand-core model. On the basis of this model, the components of the FRET distributions were attributed to the mixed-chair hybrid structures, which were reported recently, and chair-type antiparallel structures, which can be predicted from this model. The FRET efficiencies of these structures were explained in terms of partially broken structures due to steric hindrance and inappropriate capping. This basic model also consistently explains experimental results reported previously. Furthermore, using this model, the folding pathway of the hybrid structures and T-loop formation can be predicted.
Keywords :
Bin size-independent distribution analysis , Cancer therapeutic target , Confocal microscopy , Triple-strand-core model
Journal title :
Bioorganic and Medicinal Chemistry
Journal title :
Bioorganic and Medicinal Chemistry