Title of article :
On strata of degenerate polyhedral cones I: Condition and distance to strata
Author/Authors :
Dennis Cheung، نويسنده , , Felipe Cucker، نويسنده , , Javier Pena ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Systems Ay⩾0Ay⩾0 with a degenerate cone of solutions are considered ill-posed since finite-precision algorithms are not expected to find points in the cone of solutions. Consequently, common condition numbers for these systems, such as C(A)C(A) [J. Renegar. Some perturbation theory for linear programming, Mathematical Programming 65 (1994) 73–91] and C(A)C(A) [D. Cheung, F. Cucker, A new condition number for linear programming, Mathematical Programming 91 (2001) 163–174], which are based on the notion of distance to the nearest ill-posed problem, become infinite on such ill-posed instances. In this paper, we extend these two condition numbers to versions View the MathML sourceC¯(A) and View the MathML sourceC¯(A) which are always finite. Both condition numbers can be expressed in terms of a distance to a change in the geometry of the cone of solutions. The main result shows that for both of them, the distance corresponds to a notion of best conditioned solution for a canonical complementarity problem associated to the system Ay⩾0
Keywords :
degeneracy , Polyhedral conic systems , Condition numbers
Journal title :
European Journal of Operational Research
Journal title :
European Journal of Operational Research