• Title of article

    How to generate regularly behaved production data? A Monte Carlo experimentation on DEA scale efficiency measurement

  • Author/Authors

    Sergio Perelman، نويسنده , , Daniel Sant?n، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    8
  • From page
    303
  • To page
    310
  • Abstract
    Monte Carlo experimentation is a well-known approach used to test the performance of alternative methodologies under different hypotheses. In the frontier analysis framework, whatever the parametric or non-parametric methods tested, experiments to date have been developed assuming single output multi-input production functions. The data generated have mostly assumed a Cobb–Douglas technology. Among other drawbacks, this simple framework does not allow the evaluation of DEA performance on scale efficiency measurement. The aim of this paper is twofold. On the one hand, we show how reliable two-output two-input production data can be generated using a parametric output distance function approach. A variable returns to scale translog technology satisfying regularity conditions is used for this purpose. On the other hand, we evaluate the accuracy of DEA technical and scale efficiency measurement when sample size and output ratios vary. Our Monte Carlo experiment shows that the correlation between true and estimated scale efficiency is dramatically low when DEA analysis is performed with small samples and wide output ratio variations.
  • Keywords
    DEA , Scale efficiency , Technical efficiency , Monte Carlo experiments , Parametric distance function
  • Journal title
    European Journal of Operational Research
  • Serial Year
    2009
  • Journal title
    European Journal of Operational Research
  • Record number

    1313999