Author/Authors :
Karami ، Manoochehr نويسنده Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran , , Soori، Hamid نويسنده School of Public Health, Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences , , Mehrabi، Yadollah نويسنده , , Haghdoost ، Ali Akbar نويسنده Research Centre of Modeling in Health, School of Health, Kerman University of Medical Sciences, Kerman, Iran , , Gouya، Mohammad- Mehdi نويسنده ,
Abstract :
Background: There are few published studies that use real data testing to examine the performance of outbreak detection methods. The aim of this study was to determine the performance of the Exponentially Weighted Moving Average (EWMA) in real time detection of a local outbreak in Mashhad City, eastern Iran.
Methods: The EWMA algorithms (both EWMA1 with ?=0.3 and EWMA2 with ?=0.6) were applied to daily counts of suspected cases of measles to detect real outbreak which has occurred in the city of Mashhad during 2010. The performances of the EWMA algorithms were evaluated using a real data testing approach and reported by correlation analysis.
Results: Mashhad outbreak was detected with a delay of about 2 to 7 days using EWMA algorithms as outbreak detection method. Moreover, the utility of EWMA2 algorithm in real time detection of the outbreak was better than EWMA1 algorithm.
Conclusion: Applying the EWMA algorithm as an outbreak detection method might not be useful in timely detection of the local outbreaks.