Title of article
A matrix LSQR algorithm for solving constrained linear operator equations
Author/Authors
Hajarian، Masoud نويسنده Shahid Beheshti University ,
Issue Information
دوماهنامه با شماره پیاپی سال 2014
Pages
13
From page
41
To page
53
Abstract
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $\mathcal{A}(X)=B$
and the minimum Frobenius norm residual problem $||\mathcal{A}(X)-B||_F$
where $X\in \mathcal{S}:=\{X\in \textsf{R}^{n\times n}~|~X=\mathcal{G}(X)\}$, $\mathcal{F}$ is the linear operator from $\textsf{R}^{n\times n}$ onto $\textsf{R}^{r\times s}$,
$\mathcal{G}$ is a linear self-conjugate involution operator and
$B\in \textsf{R}^{r\times s}$.
Numerical examples are given to verify the efficiency of the constructed method.
Journal title
Bulletin of the Iranian Mathematical Society
Serial Year
2014
Journal title
Bulletin of the Iranian Mathematical Society
Record number
1314758
Link To Document