Title of article
Monomeric versus dimeric structures in ternary complexes of manganese(II) with derivatives of benzoic acid and nitrogenous bases: structural details and spectral properties
Author/Authors
Eugenio Garribba، نويسنده , , Giovanni Micera، نويسنده , , Michele Zema، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2004
Pages
11
From page
2038
To page
2048
Abstract
Adducts formed by [Mn(2,6-dmb)2(H2O)3]n · nH2O, 2,6-dmb=2,6-dimethoxybenzoate(1–), Mn(2,4-dhb)2 · 8H2O, Mn(2,5-dhb)2 · 4H2O or Mn(2,6-dhb)2 · 8H2O, dhb=dihydroxybenzoate(1–), and 2,2′-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (Me2bpy) or 4,7-dimethyl-1,10-phenanthroline (Me2phen) were isolated in the solid state and characterised by IR, EPR and thermogravimetry. Two of them, [Mn(2,6-dhb)2(bpy)2] (1) and [Mn2(2,6-dmb)4(Me2Phen)2(H2O)2] · 2EtOH (2), were studied by single crystal X-ray diffraction. The adduct 1 is mononuclear and consists of hexa-co-ordinate manganese(II) ions bound to two bipyridine and two 2,6-dihydroxybenzoate ligands in a cis-octahedral arrangement. The complex 2 exhibits a dinuclear structure in which two manganese(II) ions share two carboxylate groups adopting a rather uncommon single-atom bridging mode. The results allow us to conclude that weak, e.g., hydrogen bonding and stacking interactions govern the type of structure, monomeric or dimeric. The spectral features of the complexes are discussed. In particular, the solid-state EPR features of the complexes are interpreted in terms of D, E and Hmax, the high-field resonance. For the monomeric species, the higher is the D value, the higher is Hmax.
Keywords
EPR spectroscopy , Manganese(II) complexes , Enzyme models , hydrogen bonds , Stacking interactions
Journal title
INORGANICA CHIMICA ACTA
Serial Year
2004
Journal title
INORGANICA CHIMICA ACTA
Record number
1322139
Link To Document