Title of article :
Copper(II) complexes of tetradentate thioether-oxime ligands
Author/Authors :
Michael J. Prushan، نويسنده , , Anthony W. Addison، نويسنده , , Raymond J. Butcher، نويسنده , , Laurence K. Thompson، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Two dinuclear copper(II) thioether-oxime complexes ([Cu(DtdoH)]2(ClO4)2 and [Cu(DtudH)]2(ClO4)2 · 2CH3OH) have been synthesized. [Cu(DtdoH)]2(ClO4)2 reacted with excess BF3 · OEt2 to yield [Cu(Thyclops)]ClO4, a View the MathML sourceBF2+-macrocyclized di-oxime. [Cu(DtdoH)]2(ClO4)2 and [Cu(DtudH)]2(ClO4)2 · 2CH3OH are the first representatives of copper(II) thioether oximes which exhibit the classical out-of-plane oximate oxygen-metal dimer structure. [Cu(DtdoH)]2(ClO4)2 and [Cu(Thyclops)]ClO4 have been structurally characterized by single-crystal X-ray diffraction. The geometry about each copper(II) in [Cu(DtdoH)]2(ClO4)2 is a distorted square pyramid (τ = 0.14). The average copper–nitrogen(oxime) bond length is 1.984 Å longer (∼0.03 Å) than the average copper–nitrogen(oxime) bonds in copper(II) bis-glyoximates. The geometry of [Cu(Thyclops)]ClO4 reveals an almost perfect square pyramid (τ = 0.03) of N2S2O donors. Solution, cryogenic glass, and powder ESR spectra show a typical axial pattern, except for the powder spectrum of [Cu(DtudH)]2(ClO4)2 · 2CH3OH which displays a small rhombic distortion. Variable-temperature magnetic susceptibility measurements indicate very weak ferromagnetic interactions in [Cu(DtdoH)]2(ClO4)2, where J = +0.52 cm−1 and very weak antiferromagnetic interactions in [Cu(DtudH)]2(ClO4)2 · 2CH3OH, where J = −0.59 cm−1. Electrochemical measurements reveal that the mixed thioether-oxime coordination environment tends to stabilize Cu(II), as all electrochemical reductions were quasi-reversible or irreversible. [Cu(Thyclops)]ClO4 is more oxidizing than [Cu(DtdoH)]2(ClO4)2 by 0.14 V.
Keywords :
copper , Electrochemistry , Thioether-oxime , Magnetochemistry , crystal structure
Journal title :
INORGANICA CHIMICA ACTA
Journal title :
INORGANICA CHIMICA ACTA