Title of article :
Structural, microstructural and vibrational characterization of apatite-type lanthanum silicates prepared by mechanical milling
Author/Authors :
E. Rodr?guez-Reyna، نويسنده , , A.F. Fuentes، نويسنده , , M. Maczka، نويسنده , , J. Hanuza، نويسنده , , K. Boulahya، نويسنده , , U. Amador، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Apatite-type lanthanum silicates have been successfully prepared at room temperature by dry milling hexagonal A-La2O3 and either amorphous or low cristobalite SiO2. Milling a stochiometric mixture of these chemicals in a planetary ball mill with a moderate rotating disc speed (350 rpm), allows the formation of the target phase after only 3 h although longer milling times are needed to eliminate all SiO2 and La2O3 traces. Thus, the mechanically activated chemical reaction proceeds faster when using amorphous silica instead of low cristobalite as silicon source and pure phases are obtained after only 9 and 18 h, respectively. As obtained powder phases are not amorphous and show an XRD pattern as well as IR and Raman bands characteristic of the lanthanum silicate. The domain size of the as-prepared phases varies gradually with the temperature of post-milling thermal treatment with activation energies of about 26(8) and 52(10) kJ mol−1 K−1 for the apatites obtained from amorphous silica and low-cristobalite, respectively. These values suggest crystallite growth to be favored when using amorphous silica as reactant.
Keywords :
Oxide ion conductors , Band analysis , IR and Raman spectra , Apatite-type lanthanum silicates , Mechanochemical synthesis
Journal title :
JOURNAL OF SOLID STATE CHEMISTRY
Journal title :
JOURNAL OF SOLID STATE CHEMISTRY