Title of article :
Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures
Author/Authors :
Jahanshahi، نويسنده , , Mohammad R. and Masri، نويسنده , , Sami F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Current inspection standards require an inspector to travel to a target structure site and visually assess the structureʹs condition. This approach is labor-intensive, yet highly qualitative. A less time-consuming and inexpensive alternative to current monitoring methods is to use a robotic system that could inspect structures more frequently, and perform autonomous damage detection. In this paper, a vision-based crack detection methodology is introduced. The proposed approach processes 2D digital images (image processing) by considering the geometry of the scene (computer vision). The crack segmentation parameters are adjusted automatically based on depth parameters. The depth perception is obtained using 3D scene reconstruction. This system extracts the whole crack from its background, where the regular edge-based approaches just segment the crack edges. This characteristic is appropriate for the development of a crack thickness quantification system. Experimental tests have been carried out to evaluate the performance of the proposed system.
Keywords :
Crack detection , Computer vision , image processing , Pattern classification , 3D scene reconstruction , morphological operation
Journal title :
Automation in Construction
Journal title :
Automation in Construction