Title of article :
A phenomenological theory of polycomponent interactions in non-ideal mixtures. Application to NH3/H2O and other working pairs
Author/Authors :
Staicovici، نويسنده , , M.D، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
The paper proposes an original linear phenomenological theory (Ph T) of evolution physical mono-, bi- and particular polycomponent gas–liquid interactions with non-ideal mixture. The expressions of the phenomenological factors (entropy source, force, coefficient and coupled heat and mass transfer currents) are deduced. The theory is particularized to the NH3/H2O and other gas–liquid systems used in the thermal absorption technology. The workʹs conclusions are listed next. The paper raises the problem of ammonia bubble absorption which is difficult to answer with current theory of interface mass transfer and absorption as a surface phenomenon. The heat and mass transfer at the gas–liquid interface is governed by the thermodynamic force, which applies also to solid–liquid, solid–gas, or liquid–liquid, gas–gas type interactions and continuous or discontinuous media. The paper mentions a postulate referring to the force behavior approaching an ideal point, previously formulated by the author. According to its consequence, the mass and heat currents suffer an ideal point approaching (i.p.a.) effect, not mentioned so far in the specialized literature, consisting in a continuous increase of their absolute value by several percent (for a pure component), to several hundred times (for a binary system) when the interacting system approaches an ideal state, as compared to the values of states which are far from the same ideal point. In this way, “far from equilibrium” becomes synonymous to “low interaction”. The classic assessment of the interface mass transfer by analogy with heat transfer lacks basic physics. The (Ph T) satisfactorily explains the problem of ammonia bubble absorption. Absorption is a mass phenomenon, not a surface one. An intensive way of improving absorption is emphasized, which seeks to promote the i.p.a. effect appearance rather than the extensive way currently used, based on increasing gas–liquid interaction area. To this extent, the bubble absorber is hereby proposed for efficient absorption. The i.p.a. effect existence offers an additional chance for a satisfactory explanation of the Marangoni effect.
Keywords :
Absorption System , Refrigerating system , Ammonia/water , ABSORPTION , efficiency , Ammoniac / eau , Efficacité , ABSORPTION , Système à absorption , Système frigorifique
Journal title :
International Journal of Refrigeration
Journal title :
International Journal of Refrigeration