Title of article :
A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
Author/Authors :
‎Kheirfam، B. نويسنده Azarbaijan Shahid Madani University ‎Kheirfam, B. , Mahdavi-Amiri، N. نويسنده ‎Sharif‎ ‎University of Technology Mahdavi-Amiri, N.
Issue Information :
دوماهنامه با شماره پیاپی سال 2014
Pages :
24
From page :
541
To page :
564
Abstract :
‎A full Nesterov-Todd (NT) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using Euclidean Jordan algebra‎. ‎Two types of‎ ‎full NT-steps are used‎, ‎feasibility steps and centering steps‎. ‎The‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasibility steps, find‎s ‎strictly feasible iterates for the next perturbed problem‎. ‎By using‎ ‎centering steps for the new perturbed problem‎, ‎strictly feasible‎ ‎iterates are obtained to be close enough to the central path of the‎ ‎new perturbed problem‎. ‎The starting point depends on two positive‎ ‎numbers $\rho_p$ and $\rho_d$‎. ‎The algorithm terminates either by‎ ‎finding an $\epsilon$-solution or detecting that the symmetric cone‎ ‎linear complementarity problem has no optimal solution with‎ ‎vanishing duality gap satisfying a condition in terms of $\rho_p$‎ ‎and $\rho_d$‎. ‎The iteration bound coincides with the best known‎ ‎bound for infeasible interior-point methods‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2014
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
1339050
Link To Document :
بازگشت