Title of article :
$k$-tuple total restrained domination/domatic in graphs
Author/Authors :
Kazemi، Adel P‎. نويسنده ‎University‎ ‎of Mohaghegh Ardabili‎ ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2014
Pages :
13
From page :
751
To page :
763
Abstract :
‎For any integer $k\geq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$%‎ -‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum number of classes of a partition of $V$ such that its‎ ‎all classes are $k$-tuple total restrained dominating sets in $G$ we call‎ ‎the $k$-tuple total restrained domatic number of $G$‎. ‎In this paper‎, ‎we give some sharp bounds for the $k$-tuple‎ ‎total restrained domination number of a graph‎, ‎and also calculate it‎ ‎for some of the known graphs‎. ‎Next‎, ‎we mainly present basic properties of the‎ ‎$k$-tuple total restrained domatic number of a graph‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2014
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
1339064
Link To Document :
بازگشت