Title of article :
Module-Amenability on Module Extension Banach Algebras
Author/Authors :
Ebrahimi bagha، D نويسنده Department of Mathematics, Faculty of Science, Islamic Azad University, Centeral Tehran Branch, P. O. Box 13185/768, Tehran, Iran ,
Issue Information :
روزنامه با شماره پیاپی 0 سال 2012
Pages :
4
From page :
111
To page :
114
Abstract :
Let A be a Banach algebra and E be a Banach A-bimodule then S = A  E, the l1-direct sum of A and E becomes a module extension Banach algebra when equipped with the algebras product (a; x):(a?; x?) = (aa?; a:x? + x:a?). In this paper, we investigate ?-amenability for these Banach algebras and we show that for discrete inverse semigroup S with the set of idempotents ES, the module extension Banach algebra S = l1(ES)  l1(S) is ?-amenable as a l1(ES)-module if and only if l1(ES) is amenable as Banach algebra.
Journal title :
Journal of Linear and Topological Algebra
Serial Year :
2012
Journal title :
Journal of Linear and Topological Algebra
Record number :
1340314
Link To Document :
بازگشت