Title of article :
Module-Amenability on Module Extension Banach Algebras
Author/Authors :
Ebrahimi bagha، D نويسنده Department of Mathematics, Faculty of Science, Islamic Azad University, Centeral Tehran Branch, P. O. Box 13185/768, Tehran, Iran ,
Issue Information :
روزنامه با شماره پیاپی 0 سال 2012
Abstract :
Let A be a Banach algebra and E be a Banach A-bimodule then S = A E,
the l1-direct sum of A and E becomes a module extension Banach algebra when equipped
with the algebras product (a; x):(a?; x?) = (aa?; a:x? + x:a?). In this paper, we investigate
?-amenability for these Banach algebras and we show that for discrete inverse semigroup S
with the set of idempotents ES, the module extension Banach algebra S = l1(ES) l1(S) is
?-amenable as a l1(ES)-module if and only if l1(ES) is amenable as Banach algebra.
Journal title :
Journal of Linear and Topological Algebra
Journal title :
Journal of Linear and Topological Algebra